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Abstract

The concepts of L-fuzzy ideal generated by a L-fuzzy subset, L-fuzzy
prime and completely prime ideal where L is a complete lattice are con-

sidered and some results are proved.

1. Introduction

Zadeh {7] introduced the notion of a fuzzy subset
of a set X as a function from X to [0,1]. Goguen in
[1] replaced the lattice [0,1] by a complete lattice L
and studied L-fuzzy subsets. Rosenfeld [4] used this
concept and developed some results in fuzzy group
theory. Wang-Jin Liu [5,6] studied fuzzy ideals of a
ring. Mukherjee and Sen [2] studied fuzzy ideals
further.

In this paper, for a complete lattice L, the concept
of a L-fuzzy ideal generated by a L-fuzzy subset of
a ring is considered and L-fuzzy ideal generated by
a L-fuzzy point is characterized. Then by using this
characterization and the concepts of L-fuzzy prime
and completely prime ideals, it is proved that every
L-fuzzy completelely prime ideal of aring is a L-fuzzy
prime ideal, and the converse is true whenever the
ring is commutative.

2. Preliminaries

We fix L=(L,<,y,A) as a complete lattice with a
least element 0 and greatest element 1. We write
“sup” and “inf” for “v”’ and “A”, respectively. If
a,belLwe write b=a iffa<b.For a nonempty set X,
let F(X)={AJA is a L-fuzzy subset of X}. Then for
A,BeF(X), we write AS B iff A(x)<B(x) forallxe
X. By a L-fuzzy point x, of X; x€X, r€ L, we mean
xre F(X)defined by

x(y)={,

and we write x,€ X. If x,eX and x; € A € F(X),then
we write x;€ A.
From now on R is a ring.

if y=x
otherwise,
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Definition 2.1. Let I F(R), then I is called a L-
fuzzy ideal of R iff, for all a,beR

(i) I(a—b)= inf(I(a),I(b))

(ii) I(ab)= sup(i(a),I(b)).

We let I(R) be the set of all L-fuzzy ideals of R.

Definition 2.2 [6, Proposition 3.4]. Let 1,J€I(R),
then 1IJeI(R),is defined by

sup inf(I(ar), ..., I(an),J(b1)....J(bn) )
U(a)={ if a=2n aibi; for some n €N, a;,bi€R
i=1

0 if a¢2 ajb; ; for all neN, a;,b;€R,
i=1

Lemma 2.3. Let a;,bs be two L-fuzzy points of R .
then

atbs= (ab)inf(t,s).
Proof. follows directly from Definition 2.2. 1

Definition 2.4. Let A,B,A.e F(R),wherea isin the
index set AWe define AN B,Q A« e F(R)as follows,
L3 =1.%

(i) ANB (r)= inf (A(r),B(r)) ; forallreR
(ii) “QAAM (r)= igf)\ A.(r) ;forallreR.

Definition 2.5. Let P € I(R) be nonconstant. P is
said to be a L—fuzzy completely prime ideal of R iff
for any two L-fuzzy points a;,bs of R,

a:bs € P implies either a, € P or by e P.

Definition 2.6. Let P € I(R) be nonconstant. P is
said to be a L-fuzzy prime ideal of R iff for any
ILJ € I(R),

[} ¢ P implies eitherI € PorJ < P.
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3. Results

Theorem 3.1. Let A € F(R). Then the L-fuzzy sub-
set J= g I, where I € I(R), is the smallest L-fuzzy
ideal of R containing A. i.e. A € J and for any ke
I(R) such that A € k, then J € k.

Proof. The proof that J € I(R) partially follows
from Proposition 3.1 of [4]. The rest of the proof is
straightforward .l

Definition 3.2 The L-fuzzy ideal J in Theorem 3.1
is called the L-fuzzy ideal generated by A, and is
denoted by <A>.

Theorem 3.3 For an arbitrary L-fuzzy point a; of
R, <a,>= I, where 1€ I(R) is defined by

m
t if r=ab+ca-+na+ 2, aab;; for
=%
G I()= some b,c,a;,bieR, n€Z, meN
0 otherwise,

In particular,

t if r=ab+na ; for some beR,
nez
(i) I(r)=
0 otherwise

if R is commutative, and

t if r=ab; for some be R
(iii) I(r)=

0 otherwise.

if R is commutative with identity 1.

Proof (i): First we show thatI € I(R). Letb,c € R.
If I(b)= 0 or I(c)=0, then
I(b—c)= 0=inf (I(b),I(c)). Otherwise we have I(b)
=I(¢)=t and

m
b=ad+ea+na+ 3, aab;; for some d,e,a;bi€R,
1=1

neZ, m€N,

m
c=ad'+e'a+n’a+ D, a'jab’j ; for some d’.e’,a’j,
J=1

bjeR,n'€e Z, m’'e N.
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So we can write s
. b—c=ad"+e"a+n"a+ ) a”ab’; ; for some d’.e".a",
i=1

bieR,n"€ Z, m"eN.

Therefore I(b—c)=t=inf (I(b),I(c)). Hence
I(b—c)=inf (I(b),I(c)) ; for all bceR.

Now for b,c€ R, if I (¢)=0 then I (bc)= 0=1 (c)
otherwise I (c)=t and

c=ad+ea+na+ ﬁ ajab; ; for some d,e,a;,bi€R,
i=t

neZ, meN.

Thus

m
bc=bad+(be)a+(nb)a+ z (baj)ab; ; for some d,e,
i=1

a,bieR, neZ, meN.

So by definition of I, we have I(bc)=t= I(c). Hence
I(bc)=I(c) ; for all b,ceR.
Similarly
I(bc)=I(b) ; for all bceR.
Thereby I € I(R). Now, since I(a) = t,s0a; €1, ie
a; € I.
Next let JEI(R) and a;€J, we show that I¢c 1.
Consider r € R, if I(r)=0 then J(r)=0 =I(r) ; other-

m
wise I(r)=t and r=ab+ca+na+ z ajab; ; forsome
=1
b,c,a;,bieR, ne Z, me N.
So

J(r)=J(ab+ca+na+ Z a;ab;)

[=3)
=inf (J(ab), J(ac), (na),J(aiaby),..., J(amabm));
by Definition 2.1(i)

=inf(J(a).J(a),...,J(a)) ; which by Definition2.1(ii)
equals to J(a)

=t ; since a;€J

= I(r).

Therefore J(r)=I(r) ; for all reR. Hence I=

<a;>, and (i) is proved. (ii), (iii) are special cases
of (i).W

Lemma 3.4. If R is commutative, then
<a><b>=<abs> ; for all L-fuzzy points a,bs of
R.

Proof. For arbitrary ré R ; let
gh={all decomposition of r such that
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i n
N Z(nia+aci) (m;b+bd;); for some c;,d; R,
; L=t

G "ny,mieZ, neN}:

¥2={all decomposition of r such that r=1 ab+(ab)c ;
for somet € Z,ceR}+

Then it is easy to see that §;=¢,. Now by using
: Defimtlon 2.2, Theorem 3.3 (ii) and Lemma 2.3 we

‘ _f inf (t,5) if re A 1
<a><bs> (r)= { 0 otherwise @
: and
A _{inf(t,s)  ifre s
o <ab> (r)—{o otherwise. )
~ Thusby 1=, and (1), (2) the proof follows.H

Theorem 3.5. (i) Every L-fuzzy completely prime

. ideal of R is a L-fuzzy prime ideal of R. (ii) Con-
- versely if R is commutative then a L-fuzzy prime
" ideal of R is a L-fuzzy completely prime ideal of R.

~ Proof (i): Let P be a L-fuzzy completely prime

- ideal and J ,k any two L-fuzzy ideals of R such that’

Jk € P. WeshowthatJ € Pork ¢ P. Suppose] ¢ P.
" :So there exists a €R such that J(a) £ P(a). Hence
ay(a)#P.Consider the L-fuzzy points aj)€ J and bxp)e

: "’,IERg

- axbye) (1)=(ab) infu@).ke) (1)
o _[inf0@k®)  ifr=ab
Lo otherwise.

"~ Therefore ay(bk) (r)<Jk(r)<P(r).Hence aJ(a)bk(bE)fr

"k, where b is an arbitrary element of R. Then for
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Thus 3j(a) € Por bk(b) €P. But aj(a) ZP, so bk(b) eP.
Thereby k(b)<P(b), and since b was arbitrary so
k € P and we are done.

(ii) Suppose P is a L-fuzzy prime ideal of R, and
a;,bs be two L-fuzzy points of R such that abge P.
Then by Lemma 3.4 we have <a,><b,>=<ab>¢c

P. So <a;> ¢ P or <b.>C P. Hence either a;e P
or bs € P, i.e. P is a L-fuzzy completely prime ideal
of R.&

Added in proof. A recent paper of Mukherjee et
al.[2] contains a special case of our Theorem 3.5,
in which L is assumed to be [0,1]. Our results are
independent and the proofs are different.
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